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ABSTRACT

Source separation problems are ubiquitous in the physical
sciences; any situation where signals are superimposed calls
for source separation to estimate the original signals. In this
tutorial I will discuss the Bayesian approach to the source
separation problem. This approach has a specific advantage
in that it requires the designer to explicitly describe the signal
model in addition to any other information or assumptions
that go into the problem description. This leads naturally to
the idea of informed source separation, where the algorithm
design incorporates relevant information about the specific
problem. This approach promises to enable researchers to
design their own high-quality algorithms that are specifically
tailored to the problem at hand.

1. UNDERSTANDING THE PROBLEM

To gather information about the physical world, we deploy
sensors to make measurements and detect signals. Our sen-
sors, if properly designed, will collect information about the
signals of interest. However, very often the signals of inter-
est are comprised of a set of discrete signals, which have
been superimposed during propagation, often with signals
that are not of interest. Thus our sensors almost invariably
detect a mixture of signals—some interesting and some non-
interesting. In more straightforward applications, careful de-
sign of the sensors and application of filters can limit the
recordings to the signal of interest. However, when this is not
possible, more extreme steps need to be taken. This leads to
a class of problems called source separation problems.

There is no limit to the complications that may arise. Su-
perposition may be linear, or one of the infinite varieties of
nonlinear superposition. If a set of sensors are used, there
may be time delays due to propagation of the signals from
each source to each detector, or there could be convolutions
due to reflections or differences in propagation speed through
intervening media coupled with diffraction. To presume to
be able to construct a single algorithm that can deal with all
of these imaginable cases is unrealistic. Instead, we must
focus our efforts on developing a methodology for design-
ing robust algorithms that are specific to the application at
hand. Only then can we take advantage of the specific prior
knowledge we possess about each problem to increase our
chances of reaching an accurate and optimal solution. I call
this approach informed source separation, which should be
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contrasted with blind source separation, where very little is
assumed to be known about the problem.

The source separation problem can be viewed as an in-
ference problem, where one models a set of detected signals
as a mixture of a set of source signals. It is important to re-
member that inference is not deduction—it doesn’t always
work. In difficult problems, prior information goes a long
way to help assure that we reach an accurate solution. This
prior information can take many forms, and can come into
the problem at several different points. I will show that this
prior information can significantly transform the source sep-
aration problem, and subsequently, the algorithmic solution.

2. BAYESIAN PROBABILITY THEORY

In this section, I give a brief description of the Bayesian
methodology. I will focus on the use of probability theory
to describe our knowledge, and leave the details of the prob-
lem of searching the hypothesis space for the optimal solu-
tion to other authors. The crux of the methodology is Bayes’
Theorem

p(model|data, I) = p(model|I) p(data|model, I)
p(data|I) (1)

where I represents our prior information. The probability on
the left p(model|data, I) is called the posterior probability.
It is the probability that a specific model accurately describes
the problem given the data and our prior information I. The
first term on the right p(model|I) is called the prior prob-
ability, or prior for short. The prior describes the degree
to which we believe a specific model is the correct descrip-
tion before we see any data, and thus encodes our knowl-
edge about the possible values of the model parameters. The
term in the numerator p(data|model, I) is called the likeli-
hood, which describes the degree to which we believe that
the model could have produced the observed data. This term
encodes both the process of making predictions with our hy-
pothesized model and the process of comparing these predic-
tions to our data, which is an important part of the scientific
method. The term in the denominator p(data|I) is called the
evidence. In many parameter estimation problems, where we
have a static model and are merely estimating the values of its
parameters, this term simply acts a normalization factor. In
problems where we are testing one of a set of several mod-
els, this term becomes extremely relevant as it can indicate
the degree to which a model is favored by the data.

The space of all considered models is called the hypothe-
sis space. Bayes’ Theorem turns the source separation prob-



lem into a search problem, where we search the hypothe-
sis space for the most probable model. We can also look at
Bayes’ Theorem as a learning rule since tells us how to up-
date our prior knowledge when we receive new data. What
we have learned from this data combined with what we knew
prior is described by the posterior probability. In the next
section I will show how the Bayesian method applied to a
well-defined set of prior information leads directly to Info-
max ICA.

3. FIRST EXAMPLE: INFOMAX ICA

In this section I will demonstrate how the Bayesian method-
ology allows one to derive Infomax ICA [1]. While this par-
ticular derivation has been published previously [2], I present
it here again in detail both to assist with understanding the
later derivations in this paper, and also to clear up some com-
mon misconceptions surrounding ICA and source separation.
ICA is commonly considered to be a blind source separation
algorithm because we make a minimal number of assump-
tions. However, it is important point to note that no algo-
rithm is truly blind, and that the assumptions we make—even
if minimal in some sense—will have an affect on the perfor-
mance of an algorithm when applied to a given problem.

We begin by assuming that there are N sources whose
signals propagate instantaneously to N distinct detectors.
The signals are assumed to superimpose linearly so that each
detector records a linear mixture of the source signals. Fur-
thermore, the entire process is assumed to be noise-free.
This leads to a simple mathematical model that describes the
recorded signals in terms of the unknown sources1

xit =
N

∑
j=1

Ai js jt (2)

where xit is the signal recorded at ith detector at time t, s jt is
the source signal emitted by the jth source at time t, and Ai j
is the “mixing matrix”. The elements of the mixing matrix
serve to couple the sources to the detectors. Physically each
Ai j describes how the signal propagates from the source to
the detector. While the physical interpretation is kept vague
in the blind algorithm, we will see that the physical interpre-
tation is quite useful when deriving informed source separa-
tion algorithms.

We can now apply Bayes’ Theorem (1) to express the
probability of our model, A and s, given our data, x

p(A,s|x, I) = p(A,s|I) p(x|A,s, I)
p(x|I) , (3)

where A represents the entire matrix, s represents all of the
source signals emitted by the sources, and x represents all
of our recorded data. Given the fact that the source signals
are independent of the propagation, we can factor the prior
probability p(A,s|I) into two terms p(A|I) and p(s|I).

p(A,s|x, I) = p(A|I)p(s|I) p(x|A,s, I)
p(x|I) . (4)

Once we assign these probabilities, the problem is in some
sense solved. All we will need to do is to search all possi-
ble values of the matrix A and the source waveshapes s to

1I have purposefully kept this in component form so that it may be more
easily compared with other algorithms presented later in this tutorial.

find the case that is most probable. 2 When we perform this
search, the evidence in the denominator will never contribute
to the calculation since it doesn’t depend on the model pa-
rameters. So we can simplify the problem further by writing
(4) as a proportionality

p(A,s|x, I) ∝ p(A|I)p(s|I)p(x|A,s, I). (5)

Now with the basic model in hand, we can construct a
likelihood function. In this case, we are assuming that the
recording process is noise-free; thus we will assign a delta-
function likelihood function for each datum point

p(xit |A,st , I) = δ
(
xit −

N

∑
j=1

Ai js jt
)
, (6)

where I have used st to represent all of the N source ampli-
tudes emitted at time t. This delta function likelihood states,
very strongly, that we believe that our model of the source
separation problem (2) is correct. The recordings are inde-
pendent of one other, so the likelihood function for our entire
data set is merely the product of likelihoods (6) for each de-
tector and each time step

p(x|A,s, I) =
N

∏
i=1

T

∏
t=1

δ
(
xit −

N

∑
j=1

Ai js jt
)
, (7)

where T is the number of time steps.
Next we assume that the probability density of the ampli-

tude of the individual source signals has a positive kurtosis
(also known as leptokurtotic or super-Gaussian). With this
assumption, we can assign a prior probability for the ampli-
tudes of the signals emitted by the sources. Without such a
prior, this problem has an infinite number of perfectly good
solutions. This prior information will serve to make the prob-
lem soluble in cases where it is correct, while risking the pos-
sibility of incorrect solutions in cases where this assumption
does not hold. We will write

p(s jt |I) = q j(s jt), (8)

where q j(s jt) is the probability that the jth source could have
a given amplitude at any time t. We could easily follow Bell
& Sejnowski [1] and assign the derivative of a sigmoid func-
tion, which is a leptokurtotic density function. However, for
the purposes of generalization, we will just write it as q j. As-
suming that the sources are independent of one another, we
have

p(s|I) =
N

∏
j=1

T

∏
t=1

qi(s jt). (9)

We now assume that we know nothing about the mixing
matrix. We will encode this knowledge by assigning a uni-
form prior3 for the value of any given matrix element Ai j as
long as it is within a “reasonable” range

p(Ai j|I) =
{

c if Amin ≥ Ai j ≥ Amax
0 if Ai j < Amin, Amax > Ai j

(10)

2In practice, conducting this search is often the most difficult part of the
problem.

3The astute reader will recognize that each matrix element acts as a scal-
ing parameter in the problem. For this reason, a more accurate noninforma-
tive prior would be the appropriate Jeffrey’s prior for the matrix A.



where c = (Amax −Amin)−1. For the entire mixing matrix, we
can assign a uniform joint prior

p(A|I) =
N

∏
i=1

N

∏
j=1

p(Ai j|I) (11)

= { C if ∀Ai j, Amin ≥ Ai j ≥ Amax
0 if ∃Ai j, s.t. Ai j < Amin, Amax > Ai j

where C = cN2. With our likelihood and priors all defined,
we are now ready to re-write the posterior probability (5) and
begin searching for the most probable parameter values.

However, this search will not be easy. Much of the effort
in Bayesian inference is to limit the number of parameters
to search over, or to come up with a clever heuristic to per-
form the search. Furthermore, it is often easier to work with
the logarithm of the posterior (4). This neatly separates the
posterior into a sum of the log priors plus the log likelihood.

We will begin by reducing the number of parameters of
interest, and will conclude by taking the logarithm. First we
reason that if we knew the mixing matrix A, or better yet,
its inverse A−1, we could apply it to the data to recover an
estimate of the source signals. Surely this is not ideal, but it
is easier than searching the entire multidimensional parame-
ter space, which would be N2 + NT parameters. To do this
we use the fact that probabilities sum to one, and marginal-
ize over all possible values of the source signal amplitudes,
written symbolically as

p(A|x, I) =
∫

ds p(A,s|x, I) (12)

∝
∫

ds p(A|I)p(s|I)p(x|A,s, I)

∝ p(A|I)
∫

ds p(s|I)p(x|A,s, I)

where the integral sign represents all NT integrals over each
of the s jt . Substituting our likelihood (7), and source density
prior (9), we have NT integrals to solve

∫
ds11 · · ·

∫
dsNT

N

∏
j=1

T

∏
t=1

q j(s jt)δ
(
xit −

N

∑
j=1

Ai js jt
)
. (13)

The delta functions easily allow us to solve each of the in-
tegrals simply by introducing a change of variables where
wit = xit −∑N

j=1 Ai js jt . We then have that detA ds = dw, and

that s jt = ∑N
i=1 A−1

i j (xit −wit), so that the integral becomes

1
detA

∫
· · ·

∫
dwNT

N

∏
j=1

T

∏
t=1

q j(
N

∑
i=1

A−1
i j (xit −wit))δ(wit).

(14)
The delta functions now all select wit = 0, and we have as a
result

1
detA

N

∏
j=1

T

∏
t=1

q j

( N

∑
i=1

A−1
i j xit

)
. (15)

Substituting this result into (12) we get

p(A|x, I) ∝ p(A|I) 1
detA

N

∏
j=1

T

∏
t=1

q j

( N

∑
i=1

A−1
i j xit

)
, (16)

which when taking the logarithm gives

log p(A|x, I) = K+

log p(A|I)− logdetA+
N

∑
j=1

T

∑
t=1

logq j

( N

∑
i=1

A−1
i j xit

)
, (17)

where K is the logarithm of the constant implicit in the pro-
portionality. By varying A to maximize the log posterior
above, we can solve for the optimal mixing matrix. The way
this is done in ICA is to take the derivative with respect to the
inverse of A and to use this in a gradient ascent learning rule.
Specifically, if we assign the mixing matrix prior according
to (11), and write Wi j = A−1

i j , we get the familiar Infomax
ICA gradient ascent learning rule [1, 2]

∆Wi j =
∂

∂Wi j

[
− logdetA+

N

∑
j=1

T

∑
t=1

logq j

( N

∑
i=1

A−1
i j xit

)]

= A ji +
N

∑
j=1

T

∑
t=1

x jt

(
q′i(uit)
qi(uit)

)
j
, (18)

where uit = ∑N
i=1 A−1

i j xit .
However, strictly speaking, this rule doesn’t lead to the

optimal separation matrix W, since the maximum value of
the posterior with respect to variations of A will not be iden-
tical to the maximum value of the posterior with respect to
A−1. This is due to the fact that probability densities trans-
form differently than functions. Since

p(A−1|x, I) = p(A|x, I)
∣∣∣∣∂A−1

∂A

∣∣∣∣
−1

, (19)

if we define

Â = arg max
A

p(A|x, I) (20)

W̆ = arg max
A−1

p(A|x, I) (21)

Ŵ = arg max
A−1

p(A−1|x, I) (22)

in general, we have that

W̆ �= Ŵ and Ŵ �= Â−1, (23)

where Ŵ is the optimal separation matrix, Â is the optimal
mixing matrix, and W̆ is the Infomax ICA solution. Thus the
inverse of the optimal estimate of the mixing matrix does not
equal the optimal estimate of the separation matrix.4 How-
ever, the ICA solution is actually neither of these. If we were
really interested in finding the most probable inverse of the
mixing matrix, we should have used (19) to write the poste-
rior for A−1 and solved for its most probable value (22). As
a result the standard technique (18) and (21) leads to a biased
separation.

That being said, there is much one can learn from this
derivation of the Infomax ICA algorithm. Certainly one ob-
tains the same answer when deriving it from the information-
theoretic viewpoint; this being due to the duality between

4The classic example of this is the fact that the frequency at which a
given blackbody spectrum has maximum energy density is different than the
wavelength at which it has maximum energy density.



probability theory and information theory [3]. However, the
Bayesian derivation has several distinct advantages. First, all
of the assumptions that go into the algorithm are made ex-
plicit. We see that the sigmoidal nonlinearity in the original
derivation is merely related to the derivative of the prior prob-
ability for the source amplitude density. This answers one of
the common questions that arises: Why does ICA have prob-
lems separating pure sinusoids? The answer is clear; sinu-
soids have bimodal amplitude histograms, which is a severe
deviation from our prior expectation of the super-Gaussian
prior probability that we have assigned explicitly, and Bell &
Sejnowksi assigned implicitly [4]. Modifications to this prior
to allow for sub-Gaussian densities typically do not improve
the situation mainly because they are essentially smoothed
uniform densities, which are non-informative. If you want to
separate sinusoids, you need to include this relevant informa-
tion in the design of the algorithm.

Second, why does ICA assume the same number of
sources as detectors? In this derivation one can see that the
integral is not analytically solvable if we do not make such an
assumption. In addition, if we would have assumed that the
recorded signals were noisy and assigned a Gaussian like-
lihood, we would again not be able to perform the integra-
tion analytically past the first integral. The noise-free square
mixing matrix allows for an analytic marginalization over
the source waveshapes resulting in a straightforward and ele-
gant solution. However, this elegant solution will break when
pushed too far.

Last, another common question that arises is: Are
Gaussian-distributed signals separable? Often the answer is
‘yes’—you just have to rely on additional or different prior
information. This is why understanding the information that
goes into the design of an algorithm is so important. It al-
lows you to better understand the range of applicability of
an algorithm and how to fix it when it doesn’t work. This is
why I prefer the Bayesian approach to source separation. It
requires you to make all of this explicit.

4. INCORPORATING PRIOR KNOWLEDGE

In this section I will demonstrate another advantage to the
Bayesian approach. We will modify the algorithm to account
for a simple piece of prior information. Let’s say that we
know that the speeds of propagation of the signals remain
instantaneous, but that the signals follow an inverse-square
propagation law. Such knowledge implies that the coeffi-
cients of the mixing matrix are dependent on the relative po-
sitions of the sources and detectors. How can we use this
information if we have no knowledge of the source-detector
distances?

First, if we did know the distance ri j from source j to
detector i, the mixing matrix element Ai j would follow the
inverse-square propagation law

Ai j =
1

4πr2
i j

. (24)

However, we may know that the source must be within some
maximum distance R from the detector. If it could be any-
where in the three-dimensional space surrounding the de-
tector, we can assign a uniform probability for its position
(r,θ,φ) within any volume element of that space

p(r,θ,φ|I) =
1
V

=
3

4πR3 , (25)

where V is the spherical volume of radius R surrounding the
detector. This is the prior probability that the source is at any
position with respect to the detector. However, we only need
the probability that the source is some distance r from the
detector. We obtain this by marginalizing over all possible
values of the angular coordinates

p(r|I) =
∫ 2π

0
dφ

∫ π

0
sinθdθ r2 p(r,θ,φ|I) (26)

=
∫ 2π

0
dφ

∫ π

0
sinθdθ r2 3

4πR3 (27)

=
3r2

R3 .

The prior on the source-detector distance is very reassur-
ing since it is naturally invariant with respect to coordinate
rescaling (change of variables). Specifically if we introduce
a new coordinate system so that ρ = ar and P = aR with
a > 0, we find equating the probabilities around ρ + dρ and
r +dr that

∣∣p(ρ|I)dρ
∣∣ =

∣∣p(r|I)dr
∣∣ (28)

p(ρ|I) ∣∣dρ
∣∣ = p(r|I) ∣∣dr

∣∣
p(ρ|I) = p(r|I) ∣∣dρ

dr

∣∣−1

p(ρ|I) =
3r2

R3

∣∣dρ
dr

∣∣−1

p(ρ|I) =
3aρ2

P3

∣∣a∣∣−1

p(ρ|I) =
3ρ2

P3 .

Since this prior is invariant with respect to coordinate rescal-
ing, we can measure distances using any units we wish.

We can now use this to derive a prior for the mixing ma-
trix element. First write the joint probability using the prod-
uct rule

p(Ai j,r|I) = p(r|I)p(Ai j|r, I). (29)

The first term on the right is the source-detector distance
prior, and the second term is a delta function described by
the hard constraint of the inverse-square law. 5 These assign-
ments give

p(Ai j,r|I) =
3r2

R3 δ
(
Ai j − (4πr2)−1). (30)

We now marginalize over all possible values of r

p(Ai j|I) =
∫ R

0
dr

3r2

R3 δ
(
Ai j − (4πr2)−1). (31)

5Some readers may wonder why I go through the difficulty of using delta
functions rather than computing the Jacobians and just performing a change
of variables with the probability densities as we did before when demon-
strating invariance with respect to rescaling. The reason is that in more
complex problems where the parameter of interest depends on multiple other
parameters, the change of variables technique becomes extremely difficult.
Care must be taken when using delta functions, however, since the argument
needs to be written so that it is solved for the parameter of interest, in this
case Ai j rather than another parameter such as r.



To do this we will need to make a change of variables again
by defining u = (Ai j − (4πr2)−1), so that

r2 = [(4π)(Ai j −u)]−1 (32)

r3 = [(4π)(Ai j −u)]−3/2 (33)

and du = (2πr3)−1dr, which can be rewritten as

dr = 2−3/2(2π)−1/2(Ai j −u)−3/2du (34)

giving us

p(Ai j|I) = 2−4π−3/2 3
R3

∫ umax

−∞
du (Ai j −u)−5/2δ(u), (35)

where umax = Ai j − (4πR2)−1. The delta function will select
u = 0 as long as it is true that umax > 0 or equivalently that
r < R. If this is not true, the integral will be zero. If this
hard constraint of the sources being within a distance R of
the detectors causes problems, your choice for R was wrong.
The result is

p(Ai j|I) =
3

16π3/2R3
A−5/2

i j . (36)

so that the prior for the mixing matrix elements is propor-

tional to A−5/2
i j . Readers more familiar with statistics may

note (and perhaps worry) that this prior is improper since it
blows up as Ai j goes to infinity. This is not a practical con-
cern as long as the sources are not allowed to got off to in-
finity. Other readers may note that this prior depends explic-
itly on the value of the maximum source-detector distance
R. More accurate knowledge about the value of R will lead
naturally to a more appropriate prior probability, resulting in
more accurate source separation results. Once the value of R
has been chosen, this prior can be inserted into (17) to gener-
ate a source separation algorithm that accounts for this prior
knowledge.

As one can imagine, these algorithms can be made ar-
bitrarily more detailed depending on the prior information
available. If one has information about the absolute positions
of the detectors, such as in a sensor web, and probable loca-
tions of the sources, one can derive more accurate prior prob-
abilities for the source-detector distances [5] 6. This leads
naturally to more accurate prior probabilities for the mixing
matrix elements, which in turn lead to better results.

In an ICA-style gradient ascent learning rule (17, 18)
these mixing matrix priors act as an additive term biasing
the update rule toward the solutions suggested by the prior
knowledge. From this perspective, the prior can be viewed
as a regularizer. However, one shouldn’t get too carried away
with this viewpoint since rather than being devised in an ad
hoc manner, these priors can be carefully designed based on
the specific prior information possessed by the algorithm de-
signer. It would have been very difficult to guess the prior we
have just derived above.

6The author would like to thank Vivek Nigam for pointing out errors in
the SPIE98 paper, which will be corrected in a future version available at
http://www.arxiv.org/abs/physics/0205069

5. SEPARATION AND LOCALIZATION

Now that we have introduced the idea of the relative posi-
tions of the sources and detectors, we can take this problem
even further and attempt not only to separate the sources, but
also to localize them. Here I present results from an earlier
paper where we considered the relationship between source
separation and source localization [6].

We consider the problem of neural source estimation in
electroencephalography (EEG) where we have multiple neu-
ral sources in the brain and multiple recording electrodes.
Each source j emitting a signal s j will have some three-
dimensional position in the brain p j. In addition, these
sources are such that they often emit dipolar current fields,
so we must also be concerned about their orientation q j. The
mixing matrix A again describes the coupling between the
sources and the detectors. In the case of electrophysiology,
often much is known about this coupling since the electrody-
namics of current flow through tissue is well-understood and
can be modelled in detail using magnetic resonance imaging
(MRI) derived head models. In this problem, the electric cur-
rents propagate nearly instantaneously throughout the head
and superimpose linearly resulting in signals x recorded by
the detectors. Using Bayes’ Theorem, we can write the pos-
terior symbolically as

p(p,q,A,s|x, I) ∝ p(p,q,A,s|I)p(x|p,q,A,s, I), (37)

where p represents the positions of all the sources in the
model, and similarly for the other non-subscripted parame-
ters. The model we have chosen is redundant in the sense
that the mixing matrix depends on the relative positions and
orientations of the sources to the detectors. This allows us to
simplify some of the terms above, and factor the prior using
the product rule

p(p,q,A,s|x, I) ∝ p(x|A,s, I)×
p(A|p,q, I)p(p|I)p(q|p, I)p(s|I). (38)

These priors show that some model parameters are dependent
on others, such as the prior for the mixing matrix. The ori-
entations of the sources depend on their position in the brain
since the orientations are determined by the histology of that
particular neural source.

Now if we assume that we know nothing about the
source positions, nor how they affect the mixing matrix, the
prior p(A|p,q, I) reduces to p(A|I). Marginalizing over all
source positions and orientations using uniform priors, we
recover the basic source separation problem (4)

p(A,s|x, I) ∝ p(x|A,s, I)p(A|I)p(s|I). (39)

With the appropriate probability assignments, we could re-
cover the Infomax ICA algorithm, or perhaps another source
separation algorithm that is better suited for the job.

However, let’s see what happens if we change our focus
and concentrate on the source positions rather than the mix-
ing matrix. We will describe the propagation of the signals
from the sources to the detectors with a forward model that
takes into account the electrodynamics of the physical situ-
ation. For simplicity, we will write this symbolically as a
function

Ai j = F(di,p j,q j), (40)



where di is the position of the ith detector, p j and q j are the
position and orientation of the jth source. This function will
play a role in our prior probability for Ai j

p(A|p,q, I) =
M

∏
i=1

N

∏
j=1

δ
(
Ai j −F(di,p j,q j)

)
, (41)

where we are assuming that there are N sources and M de-
tectors.

Next we will assign a Gaussian likelihood to encode that
we have uncertainties about how well the model describes
the experimental data. The idea is to assume we know the
expected squared deviation σ2 between the predicted and ob-
served results. Given that we know this expected squared de-
viation, the principle of maximum entropy [7] says that the
Gaussian distribution is the most honest quantification of this
knowledge.

p(x|A,s, I) =
M

∏
i=1

T

∏
t=1

exp

[
− (xit −∑N

l=1 Ailslt)2

2σ2
i

]
. (42)

It is important to note that this does not imply that we believe
the noise is Gaussian distributed, it merely implies that we
know something about the expected squared deviation.7 If in
fact we do not know the actual value of σ , we can always
marginalize over it to obtain a more conservative probability
density related to Student’s t distribution.

We now marginalize the posterior to get rid of the nui-
sance parameters Ai j

p(p,q,s|x, I) ∝ p(p|I)p(q|p, I)p(s|I)∫
dA p(x|A,s, I)p(A|p,q, I). (43)

With our probability assignments (42) and (41), and writing
Fi j = F(di,p j,q j) the integrals become

∫
dAi j

M

∏
i=1

T

∏
t=1

exp

[
− (xit −∑N

l=1 Ailslt)2

2σ2
i

]
×

N

∏
j=1

δ
(
Ai j −Fi j

)
, (44)

which gives

M

∏
i=1

T

∏
t=1

exp

[
− (xit −∑N

l=1 Filslt)2

2σ2
i

]
. (45)

Simplifying the notation further by writing x̂it = ∑N
l=1 Filslt ,8

the marginalized posterior is then

p(p,q,s|x, I) ∝ p(p|I)p(q|p, I)p(s|I)×
M

∏
i=1

T

∏
t=1

exp

[
− (xit − x̂it)2

2σ2
i

]
. (46)

7Jaynes has an excellent chapter where he works through this common
misconception [7] ch. 7, specifically 7.7.

8Note that x̂ are the predicted recordings based on the sources s and the
forward model.

The remaining priors provide the potential for the intro-
duction of a significant amount of prior information. In this
demonstration however, I will simply assign uniform priors.
Taking the logarithm of the posterior results in

log p(p,q,s|x, I) = −
M

∑
i=1

T

∑
t=1

(xit − x̂it)2

2σ2
i

+C, (47)

where C is the logarithm of the implicit proportionality con-
stant. Maximizing this log posterior results in minimizing
the familiar chi-squared ‘cost function’

χ2 =
M

∑
i=1

T

∑
t=1

(xit − x̂it)2

2σ2
i

+C, (48)

which is a common procedure in electromagnetic source lo-
calization.

From this example we see that based on the parameters of
interest and the prior information we include, a source sep-
aration problem can become a source localization problem.
The lesson here is that the Bayesian formalism is the struc-
ture that underlies not only source separation and source lo-
calization problems, but rather signal processing in general.
In fact, many familiar techniques—even the Fourier trans-
form [8]—have their basis in the Bayesian methodology and
can be significantly improved by understanding the underly-
ing models and assumptions that go into the algorithm.

6. BEYOND SEPARATION

We can take these ideas further by developing signal mod-
els that include parameters that allow us to characterize or
describe the signals in different ways. In this example, we
again consider EEG signals. Typically an experimenter will
design an experiment and record data from multiple exper-
imental trials. The standard analysis technique consists of
averaging the data across trials to reduce the effects of noise
(‘noise’ meaning signals that are either not understood or not
interesting). The implicit signal model that is employed is
the signal plus noise (SPN) model where we assume that we
have a single stereotypic source waveshape s(t) that is pro-
duced every trial in addition to ongoing noise η (t).9 The data
that is recorded in an electrode can be modelled as

xr(t) = s(t)+ηr(t), (49)

where r indexes one of the R trials and t indexes the measure-
ments at T discrete time points. 10 Using Bayes’ Theorem
we have,

p(s|x, I) ∝ p(x|s, I)p(s|I). (50)

Relying on arguments laid out in the previous section, I will
assign a Gaussian likelihood, and a uniform prior for s. The
log posterior is then

log p(s|x, I) = −
R

∑
r=1

T

∑
t=1

(xr(t)− s(t))2

2σ2 +C. (51)

9I have changed notation here slightly where I am now writing these
signals as functions of time. This notation is more clear later when we are
required to describe latency shifts of the neural response.

10Note that the Bayesian methodology does not require that these mea-
surements be equally spaced in time. This is a distinct advantage when
dealing with ‘missing data’ problems.



We can find the maximum of the log posterior by taking the
derivative with respect to each s(t) and setting it equal to
zero. For a particular time t ′ we have

∂
∂ s(t ′)

log p(s|x, I) =
∂

∂ s(t ′)

(
−

R

∑
r=1

T

∑
t=1

(xr(t)− s(t))2

2σ2 +C

)

= − 1
2σ2

R

∑
r=1

∂
∂ s(t ′)

( T

∑
t=1

(xr(t)− s(t))2
)

= −σ−2
R

∑
r=1

(xr(t ′)− s(t ′)). (52)

Setting this equal to zero and solving for s(t ′) we get

s(t ′) =
1
R

R

∑
1

xr(t ′), (53)

which shows that if you believe that there is only one stereo-
typic signal in the data then averaging the data over trials will
yield the optimal estimator of the source signal.

However, researchers are well aware that there are mul-
tiple simultaneous signals, and that these signals vary from
trial-to-trial. We have shown that both amplitude and latency
variability play a role in the variations of the signals emitted
by neural sources [9]. This has led us to a new model of the
recorded signal from a set of neural sources

xr(t) =
N

∑
n=1

αnrsn(t − τnr)+ηr(t), (54)

where αnr describes the amplitude scale of the nth component
during the rth trial, and τnr similarly describes its latency shift
forward or backward in time. This allows us to account for
and to characterize amplitude changes and response delays
in the neural responses during the course of an experiment or
under different experimental conditions. This model assumes
that each of the N sources has a distinct stereotypic wave-
shape. In our work we have found that by simply describing
these additional characteristics of the neural responses, we
can separate source signals that vary differentially from trial
to trial. The algorithm that results from this model, and our
subsequent probability assignments, is called differentially
Variable Component Analysis (dVCA) [10, 11, 12]. To ac-
commodate multiple detectors, we simply modify the signal
model accordingly

xmr(t) =
N

∑
n=1

Cmnαnrsn(t − τnr)+ηmr(t), (55)

where C is the mixing matrix, or coupling matrix as we call
it since it describes the coupling between the sources and the
detectors. With this new signal model in hand, we are already
making interesting new discoveries in our old data sets.

7. CONCLUSION

In this tutorial I have introduced the idea of informed source
separation. My motivations here are those of a physical sci-
entist, where I have specific problems in need of accurate
solutions. In these cases, it is much more advantageous to
begin with the appropriate model, introduce the known prior

information, and derive an algorithm specifically engineered
for the task.

Historically, while source separation had its beginnings
in neural networks and information theory [13, 14, 15, 1],
it was recognized early on that these results were related
to the maximum likelihood formalism [16, 17, 18]. From
this point, one is easily led to the Bayesian methodology
[4, 19, 2, 20, 21]. A distinct advantage of the Bayesian ap-
proach is that it breaks the problem into three pieces: the sig-
nal model, the cost function, and the search algorithm. The
researcher begins by choosing an appropriate signal model
for the physical problem. Once this model has been chosen,
the researcher uses probability theory to derive the posterior
probability, which is the cost function to be optimized. With
a cost function in hand, a search algorithm is employed to
identify the optimal model parameter values. Each of these
three pieces can be modified leading to different algorithms
that vary in applicability, accuracy and efficiency.

Missing from this short tutorial is a discussion of the nu-
merous techniques and algorithms that can be used to search
the parameter space to identify solutions with high probabili-
ties. I will attempt to refer the reader to a variety of useful and
important techniques that have been presented in the litera-
ture. These methods include: gradient ascent search [1, 22],
iterative fixed point algorithms [23, 10], Markov chain Monte
Carlo (MCMC) [24, 25], sequential MCMC (also known
as particle filters) [26, 27], mean field and ensemble meth-
ods [28, 29, 30, 31], variational Bayes [32, 33], as well as
Bayesian techniques which utilize sparsity [25]. Last, as an
aid to better understanding Bayesian methods, I would rec-
ommend the following introductory references [34, 35, 36].

I would also recommend that the reader seek out the other
papers presented in this special session to get a taste for the
wide array of methods and applications. My hopes are that
this tutorial will inspire and enable readers to engineer algo-
rithms for their specific problems.
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